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not strongly well-posed. As a result, under a perturbation
of size d, the solution will have an explosive mode propor-A detailed mathematical analysis of the Berenger PML method

for the electromagnetic equations is carried out on the PDE level, tional to exp[Ïgd/e0t].
as well as for the semidiscrete and fully discrete formulations. It is In Section III we consider the semidiscrete (discretizing
shown that the split set of equations is not strongly well-posed and space only) version of the PML formulation. The analysis
that under certain conditions its solutions may be inappro-

is carried out for central spatial differencing of arbitrarypriate. Q 1997 Academic Press

order of accuracy. We show that each of the split (nonphys-
ical) magnetic components diverges as the spatial mesh
becomes finer (Dx R 0), and for a fixed Dx they growI. INTRODUCTION
linearly in time.

A long standing problem in computational electromag- In Section IV we analyze the widely used, fully discrete
netics has been the issue of finding infinite space solutions Yee scheme [4]. We show that the Yee algorithm applied
on a finite numerical domain (see [4] for references). One to the split equations satisfies the von Neumann condition
way of preventing outgoing waves from reflecting from the under the same time-step restrictions as when applied to
artificial numerical boundaries is to introduce an absorbing Maxwell’s equations. However, the von Neumann condi-
layer rather than look for more efficient nonreflecting tion is only necessary and not always sufficient. This is true
boundary conditions. Berenger (1994) introduced his PML in the present case, where we show that the norm of nth
(‘‘perfectly matched layer’’) method in which the usual power of the amplification matrix, Gn, grows linearly with
Maxwell equations are split, thus creating, in the absorbing n, i.e., iGni p n.
layer, waves which decay in all directions of propagation The findings of this investigation imply that under certain
and which match the internal vacuum solution. There are conditions, perhaps not always met in practical computa-
many reports [4] of successful application of his PML meth- tions, such as a highly refined grid or very long time of
odology, lowering the overall reflection coefficients by integration, the PML method might not yield the appro-
many orders of magnitude. Recently the PML approach priate results.
has been applied to the field of acoustics [5]. In this study In a future paper we shall introduce a set of equations
it was found that filtering was necessary in order to avoid which are strongly well-posed and whose solution decays
temporal instabilities. in all possible directions of wave propagation while being

In this paper we conduct a detailed mathematical analy- perfectly matched at the interface.
sis of the PML formulation applied to the two-dimensional
transverse-electric mode (TE) of Maxwell’s equations. The II. THE PML METHOD IN 2D—THE PDE LEVEL
conclusions of this analysis hold also for all other forms
of the equations. We can study the mathematical consequences of the

We were interested in the well-posedness of the PML PML method by considering the two dimensional trans-
formulation, and therefore investigated the pure-initial verse-electric mode (TE) case [4]. Maxwell’s equations in
value problem. The main conclusion is that the PML split- 2D for the TE case may be written as
form of Maxwell’s equation is only weakly well-posed and
therefore its solution diverges under some small perturba-
tions, an example of which is provided. W

t
5 A

W
x

1 B
W
y

1 CW, (2.1)
Section II of this paper demonstrates that unlike the

original Maxwell’s equations, the PML split equations are
where W 5 (Ex , Ey , Hz)T; Ex , Ey , and Hz being respectively
the electric-field components in the x, y directions and the1 Research supported by DARPA/AFOSR Grant F49620-96-1-0426.
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magnetic field component normal to the domain of calcu- and
lation.

The matrix coefficients A, B, and C are given by
C̃ 5 T 21

0 CT0 5 C. (2.6)

Also note that using the above, Ẽx 5 Ex , Ẽy 5 Ey , and
H̃ 5 Ïe0/«0H, and we have

A 51
0 0 0

0 0 2
1
«0

0 2
1
e0

0
2 ; B 51 0 0

1
«0

0 0 0

1
e0

0 0
2 ;

(2.2)

V 5 (Ex , Ey , Ïe0/«0H). (2.7)

Since in (2.5) all the matrix coefficients are now symmetric,
the system is by definition symmetric hyperbolic [3, p. 119],
and therefore it is strongly well-posed.

Next we will show that the PML formulation is notC 51
2

s

«0
0 0

0 2
s

«0
0

0 0 2
s*
e0

2 strongly well-posed. The loss of this property is very sig-
nificant in that it will lead to instabilities in any numerical
scheme. This point will be elaborated further in the next
section.

Under the PML-formulation the 3 3 3 system becomesHere «0 and e0 are the free space permittivity and perme-
the following 4 3 4 system, due to the splitting of theability, and s and s* denote, respectively, possible electric
orthogonal magnetic field, H, into nonphysical componentsand magnetic losses assigned to free space. The speed of
Hx and Hy . The system may be written aslight in free space is given by c 5 («0e0)21/2. Note that in

the rest of this paper we will use H 5 Hz without introduc-
ing any ambiguity.

The system (2.1) can be symmetrized through the follow- Wb

t
5 Ab

Wb

x
1 Bb

Wb

y
1 CbWb , (2.8)

ing change of variables: Let

V 5 T 21
0 W 5 (Ẽx , Ẽy , H̃), (2.3) where

where
Wb 5 (Ex , Ey , Hx , Hy)T, (2.9)

T 21
0 5 1

1 0 0

0 1 0

0 0 !e0

«0

2 ; T0 5 1
1 0 0

0 1 0

0 0 !«0

e0

2 . (2.4)

Ab 51
0 0 0 0

0 0 2
1
«0

2
1
«0

0 2
1
e0

0 0

0 0 0 0

2 ; Bb 51
0 0

1
«0

1
«0

0 0 0 0

0 0 0 0

1
e0

0 0 0
2

(2.10)

The resulting system is

Vt 5 ÃVx 1 B̃Vy 1 C̃V, (2.5)

where

Ã 5 T 21
0 AT0 5 1

0 0 0

0 0 2c

0 2c 0
2 ,

Cb 51
2

sy

«0
0 0 0

0 2
sx

«0
0 0

0 0 2
s*x
e0

0

0 0 0 2
s*y
e0

2 .

B̃ 5 T 21
0 BT0 5 1

0 0 c

0 0 0

c 0 0
2
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Note that the losses are not necessarily isotropic. If S cannot symmetrize the matrix Bb , via a similarity
transformation, then Ab and Bb cannot be symmetrizedThe lower order term, CbWb , in (2.8) does not affect

the well-posedness of the problem and we shall, therefore, simultaneously [1]. Indeed,
study this issue by considering (2.8) without this term.

First we shall show that (2.8) cannot be simultaneously
symmetrized by a similarity transformation. Consider the
diagonalizer of Ab ,

S 21BbS 51
ab«0c2

D
2

dtc
D

dVc
D

b2«0c2

D

2
ac
2t

0 0 2
bc
2t

ac
2t

0 0
bc
2t

2
a2«0c2

D

ctc
D

2
cVc

D
2

ab«0c2

D

2 , (2.13)

T 5 1
1 0 0 0

0 1 1 0

0 c«0 2c«0 21

0 0 0 1
2 ;

(2.11)

where

T 21 51
1 0 0 0

0
1
2

1
2c«0

1
2c«0

0
1
2

2
1

2c«0
2

1
2c«0

0 0 0 1

2 .
D 5 ad 2 bc.

The only way to make (S 21BbS)1,4 5 (S 21BbS)4,1 , is by
making a 5 b 5 0. This makes R, and therefore S, singular.
Clearly Ab and Bb cannot be symmetrized simultaneously.

Then we have Thus the PML equations (2.8) have lost an important prop-
erty of the original TE equations (2.1), namely symmetry.
This by itself does not imply non-well-posedness.

We will, however, show that the pure initial-value prob-
lem for (2.8) is only weakly well-posed. This means [3] that
the norm of the solution in bounded (up to exponentialT 21AbT 5 1

0 0 0 0

0 2c 0 0

0 0 2c 0

0 0 0 0
2 . (2.12)

growth in t) not only by the norm of the initial data, but
also by the norm of the initial spatial derivatives. Such a
weakly well-posed problem becomes ill-posed under some
small perturbation.

Since (2.8), without the lower order term, is a 4 3 4
The most general diagonalizer of Ab is S 5 TR, where the system with constant coefficients, we can examine its well-
columns of T are the eigenvectors of Ab and R is a matrix posedness by considering the system resulting from Fourier
such that the column of S are the most general representa- transforming the equations. The resulting system of equa-
tion of the eigenvectors of Ab . In our case, the first and tions is
fourth columns of T correspond to a zero eigenvalue.
Therefore the first and fourth columns of S are linear
combinations of the corresponding eigenvectors in T. Êx

t
5

ig2

«0
(Ĥx 1 Ĥy) (2.14a)Thus,

Êy

t
5 2

ig1

«0
(Ĥx 1 Ĥy) (2.14b)

Ĥx

t
5 2

ig1

e0
Êy (2.14c)R 5 1

a 0 0 b

0 t 0 0

0 0 V 0

c 0 0 d
2 .

Ĥy

t
5

ig2

e0
Êx , (2.14d)
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where the Fourier transform F̂, of F, is defined by bounded by the norm of the initial data, but rather depends
also on the norms of the initial spatial derivatives of Êx

and Êy . Thus the system (2.8) is only weakly well-posed. It
F(x, y, t) 5

1
2f

Ey

2y
Ey

y
F̂(g1 , g2 , t)ei(g1x1g2y) dg1 dg2 , (2.15) is well known [3] that unlike strongly well-posed problems,

which remain strongly well-posed under general small per-
turbations, weakly well-posed systems become ill-posedand therefore, as usual, ig1 and ig2 represent partial differ-
under some small perturbations.entiation in the x and y directions, respectively.

Next we shall show that the system (2.8) is ill-posedThe initial values appropriate for (2.14) are
under the perturbation represented by

Êx(0) 5 ê0 , Êy(0) 5 ĝ0 (2.16)

Ĥx(0) 5 ĥ0 2 l0 , Ĥy(0) 5 l0 , (2.17)

where (2.17) reflects the fact that for the original physical 1
0 0 2d d

0 0 2d d

0 0 0 0

0 0 0 0
21

Ex

Ey

Hx

Hy

2 . (2.20)
problem, (2.1)–(2.2), there is only one magnetic initial
value, Ĥ(0) 5 Ĥx(0) 1 Ĥy(0) 5 ĥ0 .
The solution of (2.14), subject to (2.16)–(2.17), is

The perturbed (2.8), after Fourier transforming, becomes
Êx 5

g2
1

g2
1 1 g2

2
ê0 1

g1g2

g2
1 1 g2

2
ĝ0

Ŵb

t
5 M̂bŴb , (2.21)

1
ig2

«0cÏg2
1 1 g2

2

(ĥ0 sin nt 2 b cos nt)

where
Êy 5

g1g2

g2
1 1 g2

2
ê0 1

g2
2

g2
1 1 g2

2
ĝ0

(2.18a)

2
ig1

«0cÏg2
1 1 g2

2

(ĥ0 sin nt 2 b cos nt) (2.18b)

Ĥx 5
g2

2ĥ0 2 (g2
1 1 g2

2) l̂ 0

g2
1 1 g2

2
2

ig1g2(g1ê0 1 g2ĝ0)
(g2

1 1 g2
2)e0

t

M̂b 53
0 0

ig2

«0
2 d

ig2

«0
1 d

0 0 2
ig1

«0
2 d 2

ig1

«0
1 d

0 2
ig1

e0
0 0

ig2

e0
0 0 0

4 . (2.22)

1
g2

1

g2
1 1 g2

2
(ĥ0 cos nt 1 g sin nt) (2.18c)

Ĥy 5 2
g2

2ĥ0 2 (g2
1 1 g2

2) l̂ 0

g2
1 1 g2

2
1

ig1g2(g1ê0 1 g2ĝ0)
(g2

1 1 g2
2)e0

t

(2.18d) The eigenvalues of M̂b , l, satisfy the quartic algebraic1
g2

2

g2
1 1 g2

2
(ĥ0 cos nt 1 b sin nt),

equation

where
l4 1 Fc2(g2

1 1 g2
2) 2 i

(g1 1 g2)
e0

dG l2

(2.23)
n 5 cÏg2

1 1 g2
2, b 5

ig2ê0 2 ig1ĝ0

e0cÏg2
1 1 g2

2

. (2.19)
2

2i
e0

c2(g1g2)(g1 1 g2)d 5 0.

Note that while, from (2.18), we get
For ill-posedness it is enough to show that at least one of
the four l’s has a positive real part which grows with anyĤ 5 Ĥx 1 Ĥy 5 h0 cos nt 1 b sin nt
combination of g1 , g2 . For example, consider the case of
g1 5 g2 5 g . 0. Then (2.23) becomeswhich is also the solution to the original 3 3 3 system,

each (nonphysical) component, Ĥx and Ĥy , has a linear
growth in time with a coefficient which is not bounded in (l2 1 2c2g2) Sl2 2

2ig
e0

dD5 0. (2.24)
g1 , g2 . This implies that iHx(t)i and iHy(t)i cannot be
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The first factor gives us the usual purely imaginary eigen- The system (3.2), (3.3) is identical to (2.14), (2.16), (2.17)
with g1 R Q1/Dx, g2 R Q2/Dy, ê0 R e0 , ĝ0 R g0 , ĥ0 Rvalues. The second factor yields
h0 , and l̂ 0 R l0 . We can therefore use (2.18) to write down
the solution to (3.2). In particular we get for the ‘‘secular’’

l 5 (2i)1/2 g1/2d1/2

e1/2
0

5 6(1 1 i) Sgd
e0
D1/2

. (2.25)
terms Hx , Hy :

Clearly one of the roots has a real positive part that grows
Hx 5

Q2
2

Q2
1 1 Q2

2
h0 2 l0 2

iQ1Q2

e0
FRQ1e0 1 Q2g0

R2Q2
1 1 Q2

2
G t

Dxas Ïgd/e0; i.e., we have an ill-posed problem under
small perturbation.

1
R2Q2

1

R2Q2
1 1 Q2

2
[h0 cos nt 1 b sin nt]

(3.4)
III. THE 2D PML METHOD—THE

SEMI-DISCRETE LEVEL

Hy 5 2
Q2

2

Q2
1 1 Q2

2
h0 1 l0 1

iQ1Q2

e0
FRQ1e0 1 Q2g0

R2Q2
1 1 Q2

2
G t

DxWe consider the right-hand side of (2.8) (again without
the lower order term). Under symmetric differencing a
first derivative operator of order of accuracy p may be 1

Q2
2

R2Q2
1 1 Q2

2
[h0 cos nt 1 b sin nt],

written as

where R 5 Dy/Dx is the ‘‘computational-cell aspect ratio.’’


x
5

1
Dx OMp

m52Mp

OLp

l 52Lp

aml S m
x S l

y 1 O(Dxp, Dyp). (3.1) Since Q1(u, f) and Q2(u, f) are bounded we see that under
mesh refinement (with fixed R) Hx and Hy will separately
diverge. Since in real computation there are always round-

A similar expression holds for /y. off errors in the sum H 5 Hx 1 Hy , the two growing terms
Sx and Sy are the shift operators in the x and y directions, which theoretically cancel each other, will not do so. This

respectively; 2Mp and 2Lp are the numerical domains of is true, according to (3.4) for any spatially nondissipative
dependence. In addition, am, l 5 2a2m, l , am, l 5 2am,2l . discretization, and also for any temporal finite differencing.
When (3.1) and the analogous expression for /y are ap- A specific example for a commonly used algorithm is pre-
plied to a linear combination of waves made up of the sented in the next section.
components eiqxeiry (where x 5 j Dx, y 5 k Dy), we get
expressions of the form

IV. THE APPLICATION OF YEE METHOD TO THE 2D
PML FORMULATION

x
R iQ1(u, f)

1
Dx A popular scheme is the one due to Yee [4]. The algo-

rithm is staggered both in space and time and is of second-

y
R iQ2(u, f)

1
Dy

, order accuracy in both. For the TE case considered in the
previous section the Yee formulation applied to the PML

where u 5 q Dx, f 5 r Dx, and Q1 , Q2 are finite polynomials system gives
in sin mu, sin lf.

Thus the semidiscrete version of (2.8) (without the au- E n11
x 5 E n

x 1
Dt
«0

dy (H n11/2
x 1 H n11/2

y )
tonomous term) will take the form

E n11
y 5 E n

y 2
Dt
«0

dx (H n11/2
x 1 H n11/2

y )

(4.1)

Ex

t
5

iQ2

«0 Dy
(Hx 1 Hy) (3.2a)

H n11/2
x 5 H n21/2

x 2
Dt
e0

dxE n
yEy

t
5 2

iQ1

«0 Dx
(Hx 1 Hy) (3.2b)

H n11/2
y 5 H n11/2

y 1
Dt
e0

dyE n
x ,Hx

t
5 2

iQ1

e0 Dx
Ey (3.2c)

whereHy

t
5

iQ2

e0 Dy
Ex (3.2d)

dxuj,k 5
1

Dx
(uj11,k 2 uj21,k)

(4.2)with initial values (see Eqs. (2.16), (2.17)):

dyuj,k 5
1

Dy
(uj,k11 2 uj,k21).

Ex(0) 5 e0 , Ey(0) 5 g0 , Hx 5 h0 2 l0 , Hy 5 l0 . (3.3)
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Equation (4.1) may be cast in the following matrix form A necessary, but not sufficient, condition for the stability
of (4.6) is that all the eigenvalues of G are less than orafter setting
equal to 1 in magnitude (the von Neumann condition).
The eigenvalues e of G are

Dt R
Dt
c

, Hx , Hy R Ï«0/e0(Hx , Hy)

e 5 1, 1, 1 2
c
2

6 Ï(c/2)2 2 c 5 1, 1, e1 , e2 , (4.8)

1
1 0 2Dtdy 2Dtdy

0 1 Dtdx Dtdx

0 0 1 0

0 0 0 1
21

E n11
x

E n11
y

H n11/2
x

H n11/2
y

2
(4.3)

where c 5 k2
1 1 k2

2 . These values of e satisfy the necessary
condition for stability, provided we have c # 4, leading to
the CFL condition l2

x 1 l2
y # 1. Under this condition, all

the e’s in (4.8) satisfy ueu 5 1. However, as we shall shortly
show, even though the scheme meets the von Neumann
condition, it is unconditionally unstable. In fact iGni p n,
where n 5 t/Dt is the number of temporal iterations. This5 1

1 0 0 0

0 1 0 0

0 2Dtdx 1 0

Dtdy 0 0 0
21

E n
x

E n
y

H n21/2
x

H n21/2
y

2 ,
follows from the fact that the amplification matrix G may
be written

or more compactly,

GLW n11
b 5 GRW n

b , (4.4) G 5 TJ 1
e1 0 0 0

0 e2 0 0

0 0 1 1

0 0 0 1
2 T 21

J 5 TJJT 21
J , (4.9)

where the definitions of W n11
b , W n

b , GL , and GR are self-
evident.

The Fourier symbols of dx and dy are, respectively,

where TJ is the ‘‘Jordanizing’’ matrix
dx R i2lx sin u 5 ik1 , dy R i2ly sin f 5 ik2 , (4.5)

where lx 5 Dt/Dx, ly 5 Dt/Dy, and 2f/2 # u, f # f/2.
The transformed system (4.4), after inverting, becomes

Ŵ n11 5 Ĝ21
L ĜRŴ n 5 ĜŴ n, (4.6)

TJ 51
k2 k2 0 i/k2

2k1 2k1 0 i/k1

2
ik2

1

1 2 e1

2
ik2

1

1 2 e2

1 0

2
ik2

2

1 2 e1

2
ik2

2

1 2 e2

21 0
2 . (4.10)

where

Note thatG 5 1
1 0 ik2 ik2

0 1 2ik1 2ik1

0 0 1 0

0 0 0 1
21

1 0 0 0

0 1 0 0

0 2ik1 1 0

ik2 0 0 1
2

(4.7)
Gn 5 TJJnT 21

J

5 TJ 1
en

1 0 0 0

0 en
2 0 0

0 0 1 n

0 0 0 1
2 T 21

J .
(4.11)

5 1
1 2 k2

2 k1k2 ik2 ik2

k1k2 1 2 k2
1 2ik1 2ik1

0 2ik1 1 0

ik2 0 0 1
2 .
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Using
iGni $

iGna0i
ia0i

5
Ï1/k2

1 1 1/k2
2 1 2n2

Ï1/k1
1 1 1/k2

2

iGni 5 max
;a?0

iGnai
iai

, (4.12) $
Ï2n

Ï1/k2
1 1 1/k2

2

;k1 , k2 .

Thus iGni grows linearly with n for practically any wave
we have length.
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